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Abstract. The role of strong absorption of particles in intermediate and final states has been considered.
The range of applicability of phenomenological models of absorption has been studied. This model is
nonuniversal. Its applicability depends on the type of interaction Hamiltonian and matrix element used.
We also demonstrate that the violation of the unitarity condition can produce a qualitative error in the
results. The absorption (decay) in the final state does not tend to suppress the total process probability as
well as the probability of the channel corresponding to absorption. This is true for the reactions, decays
and nn̄ conversion in the medium.

PACS. 24.10.-i Nuclear reaction models and methods – 24.50.+g Direct reactions – 11.30.Fs Global
symmetries (e.g., baryon number, lepton number)

1 Introduction

In [1] it was shown that in field-theoretical and phe-
nomenological models the effect of final-state absorption
acts in opposite directions. In the following this prob-
lem is considered in detail. We adduce additional argu-
ments and study the reasons for this disagreement. This
also makes sense if one considers that some problems were
solved by means of the above-mentioned phenomenologi-
cal models only. Also we study the range of applicability
of phenomenological models.

Phenomenologically, the absorption is described by an
optical potential [2]. For illustration, let us consider a free-
space decay a → bn̄, for example, Λ̄ → n̄π0. For a decay
in nuclear matter we have

a→ b+ n̄→ b+M (1)

(M are the annihilation mesons) because n̄ annihilates in
a time τ ∼ 10−24 s.

By way of another example we consider the nn̄ transi-
tions [3–5] in nuclear matter followed by annihilation

n→ n̄→M. (2)

The antineutron annihilation should be described by
an Hermitian Hamiltonian Ha. In the phenomenological
models

Ha → H = i ImUn̄Ψ̄n̄Ψn̄, (3)
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where Un̄ is the optical potential of n̄,H is the phenomeno-
logical absorption (annihilation) Hamiltonian. For brevity,
ReUn̄ will be omitted, except if otherwise noted.

In practice, the absorption and decay are described by
a distorted wave [6], or dressed propagator (see, for exam-
ple, refs. [7,8]). To study the model as a whole, one should
write the total interaction Hamiltonian HI . In specific cal-
culations the Hamiltonian H, as a rule, is not adduced.
However, the corresponding terms in the distorted wave or
Green function originate from H. Due to this, we consider
the problem at the level of the effective (not fundamental)
Hamiltonians.

In the case of process (1), the phenomenological model
is given by

HI = H1 +Ha → H1 +H, (4)

where H1 is the Hamiltonian of the free-space decay a→
bn̄.

The phenomenological interaction Hamiltonian of pro-
cess (2) is

HI = Hnn̄ +H,

Hnn̄ = εΨ̄n̄Ψn +H.c., (5)

ε = 1/τ . Here Hnn̄ is the Hamiltonian of the nn̄ conver-
sion [5], τ is the free-space nn̄ oscillation time. As we will
see later, process (2) is an ideal instrument for the study
of the final-state absorption and we focus on this process.

On the one hand, model (3) is very useful because it
greatly simplifies the calculation. On the other hand, the
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Hamiltonian H is non-Hermitian and so model (3) is ef-
fective. Its applicability range is restricted.

We consider the decay a→ bn̄ and the nn̄ transition in
the medium and elucidate what processes can be described
by the effective Hamiltonians (4) and (5). More compli-
cated processes are considered as well. In other words,
we study the range of applicability of model (3). We also
study the suppression of the processes mentioned above
due to final-state absorption. This is a question of prin-
ciple because the calculations with Hermitian and non-
Hermitian Hamiltonians give opposite results.

For our purposes it is sufficient to consider the simplest
potential Un̄ = const. We perform concrete calculations
and show that the unjustified application of a model can
produce a qualitative error in the results. This is primarily
true for the total probability of decays, nn̄ transitions and
reactions. Formally, models (4) and (5) can lead to an
additional suppression of the total process probability as
well as of the probability of the channel corresponding
to absorption in comparison with the calculations with
Hermitian Ha or, similarly, calculations with Hermitian
Ha can tend to increase the above-mentioned values.

With the substitution i ImUn̄ = −iΓx/2, where Γx is
the width of some free-space decay n̄ → x, the effective
Hamiltonians (4) and (5) describe the free-space two-step
processes a→ b+ n̄→ b+x and n→ n̄→ x, respectively.
So, when referring to Hamiltonian H, we keep in mind the
decay as well.

The paper is organized as follows. In sect. 2 the simple
but important statement related to the final-state inter-
action is proven: the opening of a new channel leads to
increase the total decay probability. It turns out that, for
the nn̄ conversion in the medium, model (5) contradicts
this statement (sect. 3). The same is also true for the free-
space decay (sect. 4). Section 5 shows that the reason for
this is the non-unitarity of the S-matrix and the structure
of the Green function. In this connection we review the
origin of the complex self-energy Σ in quantum electrody-
namics (QED) and optical potential theory and point out
the principal distinctions with respect to the model under
study (sects. 5 and 6). The value and physical meaning of
i ImU for various HI are analyzed as well. In sect. 7, we
qualitatively discuss more complicated Hamiltonians and
matrix elements. Field-theoretical and phenomenological
approaches are compared in sect. 8. The results are sum-
marized and discussed in sect. 9.

2 Absorption in the final state

To clarify the role of final-state absorption, we prove a sim-
ple model-independent statement. We consider the decay
a → bn̄ in the medium. Let Hs and Ha be the Hermi-
tian Hamiltonians of the scattering and annihilation of n̄,
respectively. The total a-particle decay probability Wt is
Wt = Wn̄ + Wa, where Wn̄ and Wa are the probabilities
of finding an antineutron and annihilation mesons M , re-
spectively (see fig. 1).

Let Ha = 0 and Hs 6= 0, then Wt = Wn̄ (see fig. 1a).
Now, let us turn on the perturbation Ha (see fig. 1b). At

Fig. 1. (a) The decay a→ b+n̄ in the medium without consid-
ering annihilation. (b) The same as (a), but with annihilation.
The antineutron annihilation is illustrated by a circle.

Fig. 2. The same as fig. 1 for the nn̄ conversion in the medium.

the lowest order in Ha we have

Wt(Hs +Ha) = Wn̄(Hs +Ha) +Wa(Hs +Ha) >

Wn̄(Hs +Ha) = Wn̄(Hs + 0) = Wt(Hs + 0).

Thus,

Wt(Hs +Ha) > Wt(Hs + 0). (6)

In the equality Wn̄(Hs +Ha) = Wn̄(Hs + 0) it was taken
into account that only terms of zero order in Ha give a
contribution to Wn̄. Inequality (6) can be written in terms
of decay widths. We use the probabilities for the reasons
given in sect. 5.

A similar process for the nn̄ transition [3–5] in the
medium is shown in fig. 2. Obviously, for this process,
inequality (6) is true as well.

In eq. (6) we can put Hs = 0. Instead of the annihila-
tion we can consider any process, for example a decay in
the final state with the Hamiltonian Hx. It is important
that there is no interference between diagrams a and b,
and Hx is small. The simplest case is given by fig. 1, where
Hs = 0 and the circle corresponds to the decay. Then, at
the lowest order inHx we haveWt(H1+Hx) > Wt(H1+0).
The expression Hs+Ha is nothing more than a notation.
It illustrates the presence of two channels. In principle, the
absorption and scattering can be described by one and the
same interaction Hamiltonian as in QED.

Inequality (6) shows an obvious fact: the opening of
a new channel (annihilation) leads to increase Wt. Obvi-
ously, this is generalized to more complicated processes:
reactions, decays and ab conversion involving final-state
absorption.

It turns out that models (4) and (5) give the opposite
result. This can be easily shown for nn̄ transitions in the
medium.



V.I. Nazaruk: Absorption in the final state in reactions and decays in the medium 179

3 Absorption in the phenomenological model

In the standard approach (see, for example, refs. [9–13])
the nn̄ transitions in the medium are described by
Schrödinger equations:

(i∂t −H0)n(x) = εn̄(x),

(i∂t −H0 − V )n̄(x) = εn(x),

H0 = −∇2/2m+ Un,

V = Un̄ − Un = ReUn̄ − iΓ/2− Un, (7)

n̄(0,x) = 0. Here Un and Un̄ are the potentials of n and n̄,
respectively; ε is a small parameter, Γ being the annihila-
tion width of n̄.

For V = const at the lowest order in ε the overall nn̄
transition probability (the probability of finding an n̄ or
annihilation products) in a time t is [13]

Wt(t) = 1− |Uii(t)|
2

= 2 ImTii(t)− |Tii(t)|
2 ≈ 2 ImTii(t), (8)

Tii(t) = i(ε/V )2[1− iV t− exp(−iV t)],

where U(t) is the evolution operator; Uii(t) = 1+iTii(t) =
〈n(0) | n(t)〉.

If V = const, system (7) has an exact solution. Since ε
is extremely small, only the lowest order in ε is commonly
taken into account. This is a sole approximation made in
the calculation of the Tii in the framework of model (5).

At least for small V

Wt(ReV + i ImV ) < Wt(ReV + 0),

dWt/dΓ < 0, (9)

which contradicts (6). Indeed, let ΓtÀ 1. Then,

Wt(t) = 2ε2t
Γ/2

(ReV )2 + (Γ/2)2
≈ 4ε2t/Γ. (10)

This is a well-known result [5,11,12] for nn̄ transitions in
nuclear matter. If (Γ/2)2 > (ReV )2 (the realistic set of
parameters fits this requirement), dWt/dΓ < 0. At the
point ReV = 0, dWt/dΓ < 0 as well.

In the opposite limiting case |V t| ¿ 1,

Wt(t) = ε2t2(1− Γt/6) (11)

and we arrive at eqs. (9) again. On the other hand, at small
V inequality (6) is also valid. Thus (11) contradicts (6).
In model (5) the effect of absorption acts in the opposite
(wrong) direction, which tends to the additional suppres-
sion of the nn̄ transition.

In (6) and (9) physically identical procedures have
been done: Ha = 0→ Ha 6= 0 and ImV = 0→ ImV 6= 0,
respectively. The results are opposite. Equation (10) shows
that the potential ReV suppresses the nn̄ transition,
which is certainly correct, however, Γ acts in the same
direction, which seems wrong.

To clarify the structure of (10), we consider the same
problem by means of a diagram technique [1] (see fig. 3a).

Fig. 3. (a) The on-diagonal matrix element Tii corresponding
to the nn̄ transition in the medium. The Hamiltonian of the
n̄-medium interaction is given by eq. (3). (b) The same as (a)
for the decay a→ bn̄.

Here we use the S-matrix rather than an evolution oper-
ator. Put Un = ReUn̄ = 0 for simplicity. The Hamilto-
nian (5) has the form

HI = εΨ̄n̄Ψn +H.c.− i
Γ

2
Ψ̄n̄Ψn̄. (12)

The antineutron propagator G and total process proba-
bility W d

t (t) are

G = 1/
(

εn − p
2/2m+ iΓ/2

)

= 2/iΓ,

W d
t (t) = −2 Im εGεt =

4ε2t

Γ
, (13)

where p = (εn,p) is the neutron 4-momentum; εn =
p
2/2m. So W d

t = Wt, where Wt is given by (10). The
Γ -dependence of Wt is conditioned by the propagator G.
This fact is common for a 2-tail diagram (fig. 3a) and di-
agrams with a momentum transferred q 6= 0 (figs. 1b, 3b
and 4b).

In this section the standard scheme of calculation has
been used. It is based on the Hamiltonian (5) and the
equation Wt = 2 ImTii. This is the sole way of calculation
of Wt in a one-particle model. For brevity, this model will
be denoted as model (5). We, thus, see that (5) realized
by means of the equations of motion or diagram technique
contradicts inequality (6).

4 Free-space process

To avoid questions connected with the medium correc-
tions, we consider the imaginary free-space process

n→ n̄→ p̄e+ν, (14)

in which the neutron decay is excluded. The Hermitian

Hamiltonian is HI = εΨ̄n̄Ψn+H.c. +Hβ
h, where H

β
h is the

Fig. 4. (a) The free-space process n → n̄ → p̄e+ν. (b) The
diagram corresponding to the effective amplitude of the pro-
cess (14) (see the text).
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Hamiltonian of the free-space β+-decay n̄ → p̄e+ν. The
corresponding diagram is shown in fig. 4a.

Alternatively, if we want to use model (5), we have

HI = εΨ̄n̄Ψn +H.c.− i
Γβ
2

Ψ̄n̄Ψn̄, (15)

where Γβ is the width of the free-space β+-decay n̄ →
p̄e+ν. Comparing with (12), it is seen that we can use all
the formulas given above in which Γ = Γβ . The total

probability of the free-space nn̄ transition W β
t is given

by (10) or (13):

W β
t (t) = −2 Im εGεt ≈ 4ε2t/Γβ , (16)

ΓβtÀ 1. The free-space nn̄ conversion is drastically sup-
pressed by the decay in the final state. Indeed, the free-
space nn̄ transition probability Wf is Wf = ε2t2 (see (11),

where Γ = 0) and correspondingly W β
t (t)/Wf (t) ∼

1/Γβt¿ 1. This is clearly wrong because the state of the
intermediate n̄ (see fig. 4a) coincides with the final state
of the free-space n → n̄ transition, and so the β+-decay
has no influence on the subprocess of the nn̄ conversion.
This is sufficient to reject model (5).

We should make a small comment. The process shown
in fig. 4a represents two consecutive free-space subpro-
cesses. The speed and probability of the overall process are
defined by those of the slower subprocess. Since 1/Γβ ¿ t,
the β+-decay can be considered instantaneous: for any
t1 < t the β+-decay probabilityWβ isWβ(t1, t) ≈ 1. Then,
the total process probability W β is defined by the speed of

the nn̄ conversion: W β ≈Wf ∼ t2 instead of W β
t ∼ t/Γβ .

Let us try to compose an effective model which pro-

duces W β
t through the direct calculation of the off-

diagonal matrix element. We consider fig. 4b. It differs
from fig. 4a by the fact that the antineutron is in the po-
tential V = −iΓβ/2. (Nonsense, of course.) The process
amplitude is Meff = −εGMβ , G = −1/V , where Mβ is
the amplitude of the β+-decay. For the process width we
have Γeff =

∫

dΦ|Meff |
2/2m = 4ε2/Γβ , which coincides

with W β
t /t. So we have fixed 〈f | = 〈p̄e+ν| and found that

the effective amplitude of process (14) which produces the
result (16), is given by fig. 4b.

The fallacy of this model is obvious. Certainly, this is
an illustration only, but structure (16) can be obtained by
means of the Green function G = −1/V ∼ 1/Γ solely.

In the calculation ofWt,W
d
t andW β

t model (5) is used.
The result Wt ∼ 1/Γ is very sensitive to Γ . However, the
Γ -dependence of Wt contradicts inequality (6). Besides,
result (16) is unrealistic. Therefore, this model should be
revised.

5 Unitarity and self-energy

In this and next sections the reasons for disagreement
indicated above are studied. If Γ = 0, system (7) is
certainly correct. Consequently, it is necessary to revise
the role of i ImUn̄. This question has been considered

in [1]. Taking into account the importance of this problem,
we adduce more direct evidence using the U(t)-operator
only. The approach based on the evolution operator is
more general than the S-matrix one, since in this case
the time dependence of the process does not need to be
Wt = 1−exp(−Γtt) (see (8)). Also it is infrared-free, which
is essential for ab transitions [13].

The non-Hermiticity of H implies that

(

U(t)U+(t)
)

fi
= δfi + αfi(t), (17)

αfi 6= 0, resulting in

Wt(t) =
∑

f 6=i

|Tfi(t)|
2 ≈ 2 ImTii(t) + αii(t) 6= 2 ImTii(t)

(18)
because the value of 2 ImTii is extremely small:

2 ImTii(t0) =
4ε2t0
Γ

< 10−31, (19)

where the standard set [1,14–16] of parameters ε, t0 and
Γ has been used. We thus see that (8) is invalid.

For the S-matrix, the conclusions are the same: a) The
basic relation

∑

f 6=i

|Tfi|
2 ≈ 2 ImTii (20)

is inapplicable. b) The physical meaning of ImΣ = −Γ/2
is uncertain because it is clarified using relation (20). We
would like to emphasize this fact.

On the one hand, the nn̄ transition probability is very
small (see (19)), and on the other hand, the term i ImUn̄

plays a crucial role because it enters the leading diagram
(see (13)). Because of this for the problem under study
the unitarity of the S-matrix is of particular importance.

Thus, the non-Hermitian Hamiltonian (3) leads to the
inverse Γ -dependence of Wt and to the imaginary self-
energy. In QED the Green function above threshold con-
tains an imaginary self-energy ImΣ 6= 0 as well. However,
in the case of QED the situation differs fundamentally.
ImΣ is a complicated function of parameters of the Her-
mitian Hamiltonian. It appears at higher orders in α. The
width Γ makes its appearance after a Dyson summation
of the relevant self-energies. In order to correctly enforce
unitarity, the notation of the “running width” has been
introduced.

The importance of the unitarity condition is well
known [17,18]. Nevertheless, the non-Hermitian mod-
els (3)-(5) are frequently used for the reasons given in
sect. 1. In particular, all existing calculations of nn̄ tran-
sitions in the medium are based on model (5) (see, for
example, [13] for future references).

With the substitution i ImUn̄ = −iΓx/2, where Γx is
a width of some free-space decay n̄→ x, the Green func-
tion (13) describes the non-relativistic resonance; Hamil-
tonians (4) and (5) correspond to the free-space two-step
processes a→ b+ n̄→ b+x and n→ n̄→ x, respectively.
This is obvious because the absorption can be considered
as the decay of a one-particle state. Formally, in these
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cases all the results are also true. Nevertheless, the res-
onances invite an additional consideration. As far back
as 1959, M. Levy remarked that there does not exist a
rigorous theory to which various phenomenological meth-
ods of treating resonances and decays can be considered
as approximations [19]. Attempts have been made at an
axiomatic theory [20,21].

The above-mentioned difficulties take place for ab-
sorption as well. These conceptual problems are beyond
the scope of this paper. We deal with concrete mod-
els (3)-(5) and hence propagator (13) because they are
frequently used. As for resonances and decays, we only
draw the formal analogy between the absorption Hamil-
tonian (3) and the phenomenological Hamiltonian of the
decay −iΓ/2Ψ̄Ψ .

We also note that decay (14) can be calculated by
means of the usual field-theoretical approach, but the
problem should be formulated on the finite time inter-
val [22] since fig. 4a contains an infrared singularity.

6 Optical potential

The problem is not only in the unitarity. It is in the correct
description of the absorption on the whole. In the theory
of optical potential i ImU is non-Hermitian as well. How-
ever, the picture differs principally in this case. In this sec-
tion we compare the equation of motion and the problem
under study from the standpoint of the use of an optical
potential.

In the case of the Schrödinger equation

(i∂t −H0 − Un̄)n̄ = 0, (21)

the scheme is as follows. Since Un̄ is non-Hermitian, the
condition of probability conservation

1 = |Uii|
2 +WSch (22)

is imposed. Here WSch is the loss of n̄ intensity. The matrix
element of the evolution operator is found to be

Uii(t) = 〈n̄(0) | n̄(t)〉 = e−iReUn̄teImUn̄t. (23)

From (22) and (23) it is seen that: a) WSch 6= 0 if and
only if ImUn̄ < 0 (or Γ > 0, when ImUn̄ = −Γ/2). b) If
Γ increases, WSch increases as well:

dWSch

dΓ
=

d

dΓ

(

1− e−Γt
)

> 0. (24)

This agrees with (6) and is in contradiction with (10), (11)
and (16).

The procedure given above is based on two points:
1) In (21) ImUn̄ has a clear physical meaning. It is defined
by the continuity equation corresponding to (21). 2) The
additional bound (22) provides the probability conserva-
tion (unitarization). By means of (21) and (22) Un̄ is fitted
to the p̄-atom and low-energy scattering data.

For more complex problems these requirements, as a
rule, are not fulfilled. We demonstrate this for model (5).

The fit of (7) and (8) is impossible since there are no ex-
perimental data. As a result we have (18) with the con-
sequences considered above. In addition, we try to realize
the scheme given for (21).

The coupled eqs. (7) give rise to the following equation:
(

∂2t + i∂t(V + 2H0)−H2
0 −H0V + ε2

)

n(x) = 0. (25)

According to (8), n(x) is sufficient to get Wt.
Even the first step of the scheme described above is not

realized: one cannot get the continuity equation from (25).
The S-matrix consideration accomplishes nothing because
eq. (20) is inapplicable.

Equations (7), i.e. model (5), describe only Wn̄. In this
case Un̄ can be included in the distorted wave of the an-
tineutron which is the eigenfunction of eq. (21), and this
justifies the model.

7 Generalization

If instead of the Hamiltonian (5) we take

HI = Hr,d +H, (26)

where Hr and Hd correspond to the free-space reaction
and decay, respectively, the qualitative conclusions do not
change because the heart of the problem is in the Hamilto-
nianH. As an example, let us consider the decay a→ bn̄ in
the medium. Let Γn̄ and Γa be the widths of decays with n̄
and the annihilation mesons in the final state, respectively;
Γt is the total decay width, Γt = Γn̄+Γa. The correspond-
ing partial decay probabilities are Wn̄,a ≈ Γn̄,at. Wn̄ and
Wa are the same as in sect. 2. To draw the analogy to nn̄
transitions, we use the probabilities W .

Equations (7) are time dependent and so the evolution
operator has been applied. For the decays the S-matrix is
used. In (18) one should replace T (t)→ T . The interaction
Hamiltonian is given by (4). We have

Γt =
2

T0
ImTii, (27)

where T0 is the normalization time, T0 →∞. The matrix
element Tii is shown in fig. 3b. In principle, the antineu-
tron propagator in the loop should be calculated through
the Hermitian Hamiltonian Ha: G = G(Ha). Model (4)
means that

G(Ha)→ G(H) = G(−iΓ/2) = −
1

p̂n̄ −m+ iΓ/2
, (28)

where pn̄ is the antineutron 4-momentum. Obviously, for
the matrix element shown in fig. 3b eq. (18) takes place
as well. Relation (20) is invalid; the physical meaning of
ImΣ = −Γ/2 is uncertain.

The probability of finding an antineutron Wn̄ is
described by an off-diagonal matrix element. In the
distorted-wave impulse approximation the interaction re-
sponsible for the absorption is included in the antineutron
wave function:

n̄(x) = Ω−1/2e−i[(p
2/2m+i ImU)t−px]. (29)
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Fig. 5. The decay a→ b+ n̄→ b+ p̄+ e+ + ν in the medium.
The bold line signifies the antineutron annihilation in the in-
termediate state.

The corresponding diagram is shown in fig. 1a, where the
antineutron state is described by (29). The wave function
n̄(x) is the eigenfunction of eq. (21), which justifies the
use of model (3) in the calculation of n̄(x) and Wn̄.

The probability of finding the annihilation products is
obtained from

Wa = Wt −Wn̄. (30)

Since eqs. (20) and (27) are inapplicable, Wt and Wa are
uncertain.

We thus see that (4) describes only Wn̄. The result
is the same as for the nn̄ transitions considered above.
Obviously, in the strong-absorption region Wn̄ ¿Wa and
Wn̄ ¿Wt.

Figures 1b and 2b correspond to absorption in the fi-
nal state. Model (3) is also used for the description of the
absorption in the intermediate state (see fig. 5). The in-
teraction Hamiltonian of the process shown in fig. 5 has
the form

HI = H1 +H+Hβ
h. (31)

The quantitative study of models (26) and (31) is the
subject of a separate investigation. Here we consider only a
qualitative picture. The amplitude corresponding to fig. 5
is given by

T5=−M1G(iΓ )Mβ ,

G(iΓ )=
[

(p0−q0−m)−(p−q)2/2m+iΓ/2
]−1

. (32)

Here M1 and Mβ are the amplitudes of decay (1) and β+-
decay, respectively; p and q are the 4-momenta of particles
a and b, respectively; m is the antineutron mass.

The antineutron propagator G(Ha), calculated
through the Hermitian Hamiltonian Ha, contains the
loops. This leads to suppress the amplitude T5. G(iΓ )
from (32) acts in the same direction: the probability of
finding the β+-decay products is W5 ∼ Γβ/Γ

2. W5 is
less sensitive to model (3) than Wt because the unitarity
condition is not used. In this case at least there is no
qualitative contradiction. (This question needs quanti-
tative consideration. Most likely model (32) yields too
great suppression.)

Below we consider the most realistic case Γ À Γβ .

In the lowest order in Hβ
h the probability of finding an

antineutron Wn̄ is the same as for Hamiltonian (4). For
the on-diagonal matrix element Tii and total decay prob-
ability Wt the calculation scheme and conclusions are also

identical to those for (4) and (26). The fact that the an-

tineutron propagator in the loop is defined by Hβ
h and H

is not principal because the heart of the problem is in the
i ImUn̄.

Similarly to (30) we have

Wa = Wt −Wn̄ −W5. (33)

Since eq. (20) is inapplicable, Wt and Wa are uncertain.
For model (31) we conclude: a) Wn̄ should be de-

scribed correctly. b) The major decay characteristics Wt

and Wa are not described. c) For the process shown in
fig. 5 model (32) can be used as a first approximation.

8 Unitary model

In sects. 2-4 on the basis of a general reasoning we
concluded that in the phenomenological model the Γ -
dependence of Wt is wrong. Below we consider the uni-
tary model and calculate directly the off-diagonal matrix
element by means of the diagram technique.

If Γt À 1, the probability of finding the annihilation
mesons Wa is much greater than that of the antineutron
Wn̄. However, the phenomenological model describes Wn̄

only. Recall that for the total nn̄ transition probability
the phenomenological model gives Wt ∼ 1/Γ (see (13)).
Since Wn̄ ¿Wt, Wa depends inversely on Γ as well:

Wa = Wt −Wn̄ ≈Wt ∼ 1/Γ. (34)

For the processes which are described by Hamiltoni-
ans (26) and (31) it is sufficient to recall that Wt and Wa

are uncertain for the reasons given above. In our opinion,
with correct consideration of the corresponding loops we
will obtain dWt/dΓ < 0, as with (34).

The direct calculation of the off-diagonal matrix el-
ement gives the inverse Γ -dependence dW/dΓ > 0. In-
deed, we consider the process (1). The a-particle and n̄
are assumed non-relativistic. The wave function of the b-
particle is Φb(x) = (2q0Ω)−1/2 exp(−iqx), where q is the 4-
momentum of the particle. As with Hnn̄, the decay Hamil-
tonian is taken in the scalar form H1 = ε′Ψ̄n̄Φ

∗
bΨa + H.c.

and correspondingly

HI = ε′Ψ̄n̄Φ
∗
bΨa +H.c. +Ha; (35)

ε′ is dimensionless.
The process amplitude is given by

M1 = −ε′
1

(p0 − q0 −m)− (p− q)2/2m+ i0
Ma. (36)

Here Ma is the annihilation amplitude, m is the antineu-
tron mass, p is the 4-momentum of the a-particle.

For simplicity assume that mb/m ¿ 1, where mb is
the mass of the b-particle. It is easy to estimate the width
of decay (1):

Γ1 ≈ ε′2Γ/
(

2π2
)

. (37)

The corresponding decay probability is proportional to Γ :

Wh
a = Γ1t ∼ Γ. (38)
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The index h signifies that the Hermitian Hamiltonian is
used.

The width of process (2) is also linear in Γ [1]:

Γ2 ∼ Γ. (39)

For the Hamiltonians containing three terms the Γ -
dependence of W h

a is the same. Thus,

Wh
a ∼Wh

t ∼ Γ, (40)

where W h
t is the total process probability.

From eqs. (40) and (34), we see that the unitary and
non-unitary models lead to inverse Γ -dependence of the
results. Because of this the calculations with the Hermi-
tian Ha can tend to increase Wa and Wt. (See also eq. (12)
of ref. [1].)

9 Summary and conclusion

We list the consequences of an unjustified use of the model
based on eqs. (20) and (3).

1) Equation (9) contradicts (6) and (24).
2) Result (16) is unrealistic.
3) Wt ∼ 1/Γ , whereas W h

t ∼ Γ (see (34) and (40)).
4) The physical meaning and value of ImΣ are uncer-

tain (see the text below (20)).
Model (3) was adapted to quite definite problems. It is

justified for the problems described by Schrödinger-type
equations. It also describes the complicated processes (re-
actions, decays and nn̄ transitions) with n̄ in the final
state. (More formally, model (3) can be applied to the
calculation of Wn̄ corresponding to the Hamiltonians con-
taining several terms (eqs. (26) and (31), for example).)
As a first approximation, it can be used in the calculation
of the diagrams like that shown in fig. 5 with n̄ in the in-
termediate state. In these cases W are calculated directly
without the use of the unitarity condition and the calcu-
lation of Tii.

In other cases, when the interaction Hamiltonian con-
tains several terms and the unitarity condition is used
(eqs. (8), (13), (27) and (33), for example), model (3) is
inapplicable. The calculation of the total process probabil-
ity Wt (and thus Wa) corresponding to inclusive reaction,
decay or ab transition is impossible. The physical mean-
ing of ImΣ is uncertain. The effect of absorption, as a
rule, acts in the opposite (wrong) direction, which leads
to additional suppression. In particular, model (5) gives
rise to the dramatic suppression of nn̄ transitions due to
the annihilation in the final state, which is wrong.

This paper also demonstrates the importance of the
unitarity condition for any model of Σ [23,24]. The model
should by unitary or unitarized.

Finally, we touch upon the result sensitivity to
model (3). It is seen from the Green function (32). The Γ -
dependence is masked by q. If q → 0 (2-tail) and ma = m,

the problem is extremely sensitive to Γ : T5 ∼ 1/Γ . Alter-
natively, in the phenomenological model the nn̄ conver-
sion is described by system (7) which has an exact solu-
tion. For these reasons the nn̄ transitions in the medium
are the ideal instrument for the study of the final-state
absorption.

We also emphasize the following: the absorption (de-
cay) in the final state (figs. 1b, 2b and 4a, for example)
does not lead to suppress the total process probability as
well as the probability of the channel corresponding to
absorption, in contrast to the phenomenological model re-
sults. Therefore, the calculations based on unitary models
can tend to increase the above-mentioned values.

The author is grateful to Prof. E. Oset for helpful comments.
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